首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79197篇
  免费   6248篇
  国内免费   3678篇
电工技术   3331篇
技术理论   2篇
综合类   3731篇
化学工业   20476篇
金属工艺   1887篇
机械仪表   3161篇
建筑科学   1344篇
矿业工程   1594篇
能源动力   10428篇
轻工业   11400篇
水利工程   431篇
石油天然气   20776篇
武器工业   1532篇
无线电   606篇
一般工业技术   3807篇
冶金工业   1903篇
原子能技术   1635篇
自动化技术   1079篇
  2024年   233篇
  2023年   1162篇
  2022年   2162篇
  2021年   2597篇
  2020年   2720篇
  2019年   2662篇
  2018年   2221篇
  2017年   2791篇
  2016年   2860篇
  2015年   2570篇
  2014年   4403篇
  2013年   5171篇
  2012年   5148篇
  2011年   6076篇
  2010年   4469篇
  2009年   4123篇
  2008年   3695篇
  2007年   4480篇
  2006年   4468篇
  2005年   3810篇
  2004年   3364篇
  2003年   3057篇
  2002年   2665篇
  2001年   2298篇
  2000年   1974篇
  1999年   1602篇
  1998年   1322篇
  1997年   1091篇
  1996年   839篇
  1995年   685篇
  1994年   550篇
  1993年   394篇
  1992年   344篇
  1991年   250篇
  1990年   173篇
  1989年   125篇
  1988年   80篇
  1987年   89篇
  1986年   55篇
  1985年   83篇
  1984年   79篇
  1983年   46篇
  1982年   50篇
  1981年   15篇
  1980年   25篇
  1979年   5篇
  1978年   4篇
  1976年   4篇
  1959年   11篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
1.
2.
3.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
4.
Due to problems such as pores on surface-treated coatings, the corrosion resistance of pure titanium bipolar plates for proton-exchange membrane fuel cells can be further improved by increasing the corrosion resistance of pure titanium by using differential speed-rolling (DSR); however, these materials have not yet reached the standard requirements of bipolar plates (corrosion current density icorr<103 nA·cm?2). In this work, the corrosion resistance of pure titanium was improved by optimizing the DSR process while the strength was maintained. The best corrosion resistance of the DSR pure titanium was achieved when the roller speed ratio was 2, while icorr was 429 nA·cm?2 in a solution of 0.5 M H2SO4 and 2 mg/L HF at room temperature. The formability of the DSR pure titanium for bipolar plates was verified. The optimal holding pressure range was 6.8–7.0 kN.  相似文献   
5.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
6.
Micro-cracks commonly occur on the catalyst layers (CLs) during the manufacturing of catalyst coated membranes (CCMs). However, the crack shape parameters effect on CLs in-plane (IP) electronic conductivity λs is not clear. In this work, the relationship between crack parameters and the λs is obtained based on the two-dimensional (2D) multiple-relaxation time (MRT) lattice Boltzmann method (LBM). The LBM numerical model is validated by the normalized λs experiment applied on three different home-made cracked CLs, and the parameter study focus on crack width, length, quantity and phase angle are carried out. The results show that the decrease of λs has different sensitivity |k| to the parameters above. The crack width has little effect on λs decrease, and the |kw| is 0.038. However, crack arm length and quantity show more significant impact, which |kl| and |kN| are 0.753 and 0.725, respectively. The CLs with different crack propagation directions show significant anisotropy on λs, and a 53.53% decrease in λs is observed between 0° and 90° crack phase angle change. To manufacture a high electronic conductivity CL, crack initiation and migration mitigation are highly encouraged.  相似文献   
7.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
8.
9.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
10.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号